

SPTS APS PM Overview Prepared for Customers

August 2013

©2012 SPTS Technologies - Confidential & Proprietary

Contents

2

Details on APS applications

- Oxide & nitride
- Deep oxide
- Glasses
- Sapphire
- SiC/GaN
- PZT/Pt
- Endpoint Capability
- Summary

Strongly Bonded Materials & Markets

Etched Material	End Market					
	MEMS	Optical	Compound Semi	Power Semi	Adv Packaging	
Deep oxide		Waveguides				
Glass	Fluidics Biomedical	Waveguides			Through glass vias?	
Sapphire			Pre-patterned substrates			
SiC	High temp (engine mgt)		GaN power	FETs		
PZT	Piezoelectric (inkjet)					
LiNbO ₃		Modulators				

 Requirement to etch strongly bonded materials across multiple end markets

APS Module – Good Fit to Requirements SPTS)

- Magnetic confinement reduces electron & ion losses to walls/lid
- Heated chamber reduces radical losses
- Small, multi-turn planar coil & ceramic
 - Inductively coupled plasma
- Higher ion and radical densities

Best suited to strongly ion driven chemical etching

~100x AOE/APS modules installed

Waveguide Core Etching

Typical etch rate 0.3-0.5 µm/min depending on oxide type & doping

Waveguide Termination Etch

- Cladding layer etch
 - 200 mm quartz wafer
 - Poly Si mask
 - Etch depth ~40µm
 - Etch rate 6000 Å/min
 - Profile 90°
 - Selectivity to mask >30:1
 - Uniformity ±4%

Deep Oxide Etching Challenges

- Range in etch depths depends on end market
 - ~6µm for waveguide cores
 - 10's of µm for waveguide termination (cladding etch)
 - 100's of µm for lenses & through wafer applications
- 3 types of mask used
 - PR lowest selectivity, limited on depth
 - Si (amorphous or poly) medium selectivity, deeper etches
 - Metals (AI, Cr, Ni) highest selectivity, for deep etching and HAR
- Glass etching behaviour depends on glass type
- Pure quartz & fused silica etch like thermal oxide
 - Smooth etching, lower bias powers
- Pyrex contains impurities B, Na, AI, Fe, Ca, Mg ..
 - Rougher surfaces, higher bias powers
- SPTS has large install base
 - >40x Etch PMs for waveguide & related applications

Silicon Oxide Etch

	V 1 = 4.110 µm	
1 µm		210 SPTS)

- Etch depth 0.5 μm
- Etch rate 0.3 μm/min
- Uniformity <±4%</p>
- S_{PR} ~4:1
- S_{Si} ~14:1
- Profile ~80-88°
 - Feature dependant

Oxide Contact Etching

~0.7µm diameter x 0.87µm deep contact etch

- $C_4F_8/He/H_2$ chemistry
- Etch rate 0.33µm/min
- S_{PR} ~3:1
- S_{Poly} >10:1
- S_{TiSix} >8:1
- Profile ~90°

1.6µm PR TEOS/BPSG stack Poly & TiSix stop layers <1% open area 150mm Si wafer

Tapered Oxide Contact Etching

- Etch rate 0.65µm/min
- Uniformity ±3-4%
- Profile ~69°
- S_{PR} ~1.5:1
- Si loss <0.5µm</p>

Silicon Oxide Etch

- Etch depth 4.3 μm
 - Partial etch
- Etch rate 0.53 μm/min
- Uniformity <±3%
- S_{PR} ~2.7:1
- Profile ~80°
 - Mask dependant

Silicon Oxide Etch

- Etch depth 7µm
- Etch rate 0.54 µm/min
- Uniformity ±1%

Sub-Micron HAR Oxide Etching

Metal mask 0.5µm features 3.5µm deep ~7:1 AR

Etch rate 0.5µm/min

- Selectivity >50:1
- Profile 89-90°

Metal mask 0.6µm features 12.0µm deep ~20:1

Si mask 0.24µm features 0.5µm deep

- Etch rate 0.28µm/min
- Selectivity >50:1
- Profile 89-90°

- Etch rate 0.3µm/min
- Selectivity >5:1
- Profile 86°

Silicon Nitride Etch

- Etch depth 0.2 μm
 - Partial etch
- Etch rate 0.35 µm/min
- Uniformity <±3%</p>
- S_{PR} ~2.9:1
- Profile ~84°
 - Mask dependant

Silicon Nitride Etch

- PR mask
- Etch depth ~2.5 μm
- Etch rate ~0.5 μm/min
- S_{PR} >3:1
- Uniformity <±3%</p>
- Profile ~89°

Sub-Micron Silicon Nitride Etch

- 500nm features
- PR mask
- Etch rate ~0.42 μm/min
- S_{PR} 1.3:1
- Profile angle 90.5°

Quartz Glass Etching

Depth, etch rate & selectivity depend on mask type

PR mask Etch depth ~8µm Etch rate ~0.29µm/min Profile ~89° S_{PR} ~5:1 Si mask Etch depth ~20µm Etch rate ~0.49µm/min Profile ~89.8° S_{Si} ~18:1 Al mask Etch depth ~90µm Etch rate ~0.60µm/min Profile ~90.5° S_{Al} ~40:1

Quartz tuning forks Ti/Ni/Au mask Etch depth ~80µm Etch rate ~0.32µm/min Profile ~91.5°

© 2012 SPTS Technologies

Fused Silica Glass Etching

20µm trenches Al mask Etch depth ~37µm Etch rate ~0.58µm/min Profile ~85° S_{Al} ~27:1

40µm trenches Ni mask Etch depth ~100µm Etch rate ~0.64µm/min Profile ~88.8° S_{Ni} ~15:1

Pyrex Glass Etching

test 02

21.0µm

Depth, etch rate & selectivity depend on mask type

4 μm SU8 PR mask Etch depth ~7μm Etch rate ~0.34μm/min Profile ~81° S_{SU8PR} ~4.7:1

4µm Al mask Etch depth ~20µm Etch rate ~0.65µm/min Profile ~73.0° S_{AI} ~11:1

92 3ur

80.0µm

15 50 SEI

19.9µm

×1,100 100m

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

1.5μm Cr mask Etch depth ~6μm Etch rate ~0.80μm/min Profile ~80.0° S_{Cr} ~19:1 4µm Cr mask Etch depth ~20µm Etch rate ~1.4µm/min Profile ~83.0° S_{Cr} ~20:1

5 Mm

×2.7

Pre-patterning Sapphire for LEDs

- Pre-forming features in sapphire
 - Improves GaN dislocations
 - Increases light efficiency by reflection
- Wet etching is crystallographic
 - Doesn't offer shape flexibility
- Dry etching requires mechanical clamping (combo with ESC)
 - Minimal wafer overlay for best uniformity
- Etch rate ~150 nm/min
- Profile ~55°
- S_{PR} ~0.3-0.7:1 (controls shape)
 - Peaked or flat topped cones
- Smooth sidewalls

© 2012 SPTS Technologies

SiC Via Etching for GaN Power

- Compound Semi Fab activity
 - High power from wide band-gap materials
- A challenging application
- Issues wrt clamping & cleanliness
 - Mechanical clamping preferred
 - Low volatility of etch by-products
 - Bonded wafer temperature
- Industry leading capability
 - Proprietary descum minimises pillar defects
 - Etch rate ~1.3µm/min
 - Selectivity to Ni mask ~35:1
 - Profile ≤90°
 - Wafer temp <116°C

80 x 100µm Via

GaN Etch at Via Base

- 100µm deep SiC via etched to GaN stop layer
 - GaN loss <0.35µm

 Base of SiC via after GaN etching

- GaN etch rate ~0.49µm/min
- Profile <90°</p>
- Metal loss <0.6µm</p>

PZT Etch – Single Step Process

- Etch depth 0.5µm
 - Etch rate 0.18µm/min
- S_{PR} ~1.2:1
- S_{Pt} ~1:1
- Profile ~70°

PZT Etch – 2 Step Process

24

High selectivity over-etch

- Etch rate 27nm/min
- S_{PR} ~0.24:1
- S_{Pt} ~12:1
- Profile ~70°

- Etch depth ~2µm
- Etch rate 0.2µm/min
- S_{PR} ~2:1
- S_{Pt} ~4:1
- Profile ~72°

Deep PZT Etch – Ni Mask

- Etch depth up to 15µm
- Etch rate 0.2µm/min
- S_{Ni} ~8:1
- Profile ~72°

- Etch rate 0.18µm/min
- S_{PR} ~1.3:1
- S_{Pt} ~1.6:1
- Profile ~70°

Endpoint Capabilities for APS

- Verity OES hardware utilized for endpoint monitoring and control (mounted to chamber viewport):
 - On-wafer etching, on-chamber cleaning, etc. (200-800nm)
 - Integrated to software, recipe control, can be field upgraded
- Applications with endpoint:
 - SiO2, SiN, SiC, GaN (for various exposed areas/patterns)
 - Select regions of interest, control with overetch features

Summary

- Strongly bonded materials are used extensively within SPTS's target markets
 - MEMS, waveguides, compound, power & advanced packaging
- APS is well suited to etching strongly bonded films
 - High ion & radical densities
- APS applications capability includes:
 - Dielectric etching
 - Deep oxide etching for waveguides & related
 - Glass etching
 - Sapphire etching
 - SiC/GaN
 - PZT/Pt
- APS endpoint capabilities for various applications