

Kanto Gakuin University Materials & Surface Engineering Research Center Technology Report

- ✓ Potential Applications
- ✓ Plating on Glass/Silicon
- ✓ Direct Patterning
- ✓ Non-toxic Gold (RSG) Plating System

2013年2月15日 Chris Cordonier

Potential Applications

for

plating on glass & fine patterning (< 5 um)

Future Generation Circuitry

>Smaller: Finer pitch, smaller features, more precise shapes

> More stacking: More layer substrate & stacked devices (3D LSI)

>Lower cost

>Green: Environmentally benign chemistry, process, materials, minimal waste

Glass Interposer

Direct pattern seed layer plating for interposer/RDL:

>Solution deposition of copper or gold seed layer to glass substrate with via holes. Surface & inside via holes

Silicon → GLASS interposer:

- >low latency, strong insulation
- ➤ low cost, easy handling
- ➤ large area / roll to roll processing

Optical Electronics

∠ Displays (fine circuitry)

∠ Touch panels (electrodes)

∠ Optical transmission

∠ Photovoltaics

∠ LED & Organic electroluminescent illumination (electrodes)

electrical conductor + transparent ⇒ transparent electrode

Windows 7

Smart phone / Tablet display+touch panel

Conventional: sputtered tin doped indium oxide (ITO) or fine metal wires (>5 um)

Transparent Electrodes

transparent electrodes for capacitive type touch panels

Mesh Pattern / Transparent Electrode 🕸 🗒

Patterned copper on copper catalyst

Fine mesh as a transparent electrode

"More conductive than ITO with the same transparency"

Sheet resistance, $R_{sh} = 0.5-5 \Omega/\Box$, Transparency, %T = > 90%

Proposal: Dual side patterning × Fine mesh pattern electrode

Touch panel functionality 👚 cost 🤝 in an indium free × wet process

Plating on Glass

Conventional Plating on Plastics

Decorative

Electronic

Conventional Patterning

Problems

- ➤Too many steps
- >Rough surface:
 - -limited resolution
 - -high impedance @ high frequency
 - -Migration risk
- ➤ Bridging (short circuit)
- ➤ Chemicals with environmental impact & toxic effects

Objectives

∠ Smooth substrate-plating interfaces (for increased pattern resolution & low loss high frequency transmission)

∠ Precision & fine wire/structure formation

∠ Lower cost

∠ Increased environmental neutrality

∠ Techniques to allow new or more refined functions to improve quality of existence.

Ex: Shoulder Phone

i Phone

UV Surface Reformation

very smooth surface

3 birds with one stone! <u>adhesion</u> + <u>patterning</u> while maintaining a <u>smooth interface</u>

Same Model for Glass

Anchor Layer Formation 🖈

Glass surface reformation is difficult ⇒ Deposit a catalytic anchor layer

- ➤ Nano-anchor formation
- ➤ Polar material for hydrophilic surface/high metal bonding
- ➤ High adhesion fused/infused interface

Plating on Glass

Catalytic nano-anchor precursor coating (solution deposition)

Nano-anchor layer (Ra = 1 nm) of 30-50% porosity containing electroless plating catalyst

Electroless/electro plating

Electroless/electro plating

- > Anchor layer penetration & filling
- ➤ Blister formation resistance
- >Low stress deposit
- Cross cut test passed for thin films/seed layers
- \triangleright Adhesion often fails for films thicker than 1 μ m (electro Cu).
- ➤ Catalysts: Pd, Cu, Au (Cu for Pd free Cu plating & Au for all gold process)
- \triangleright Electroless plating: Cu (formalin), Ni (PO₃3+), alloys, Ag, Au, ENIG
- ➤ Electroplating: low stress bright copper sulfate, gold

Copper Stained Glass

Infusion of copper into glass

~10 nm infusion layer

- ➤ Formation for a Cu infusion layer
- ➤ Significant increase in adhesion is possible BUT
- > At high temperature severe Cu oxidation occurs
- ➤ At over 400°C, complete oxidation to CuO
- > At high temperature Ni oxidation/discoloration occurs

Copper/Nickel Passivation

Infusion of copper into glass

- ➤ Formation for a Cu infusion layer
- ➤ Conducting surface remains smooth
- \triangleright Significant increase in adhesion (0 \rightarrow 0.3 kN/m for Cu/Tempax)
- >Oxidation does not progress beyond the passivation layer
- ➤ No discoloration of Cu or Ni at high temperature
- > Easy removal of passivation film after thermal infusion

Overall Process

Example: Copper plating

Substrate: 5x5 cm Tempax glass

Catalyst: AHK1T-259 palladium catalyst (spin coat solution)

Curing: 200-500°C

Activation: Submersion in hypophosphite solution (50°C-2 min.)

Electroless plating: 80 nm Copper

Electroplating: 17 um Copper (acid copper @ 2.5 ASD)

Passivation: CSA spin coat Thermal infusion: 350-500°C

Passivation film removal: Submersion in NaOH solution (50°C-2 min.)

Direct Patterning

<5 μ m features

Photo-reactive Metal Complex

Some of the materials we have photo-patterned so far...

Complex I	<i>A</i> →	metal • o xide	Complex M	→	metal • o xide	Complex M	→	metal • oxide
Мg	500°C	MgO	Ga	500°C	Ga_2O_3	Се	500°C	Ce ₂ O ₃
Αİ	500°C	AI_2O_3	Ge	500°C	GeŌ2 ¯	Ρr	500°C	Pr_2O_3
Si	500°C	SiŌ2	Nb	500°C	Nb_2O_5	Sm	500°C	Sm_2O_3
Τi	500°C	TiO2	Ta	500°C	Ta_2O_5	Eu	500°C	$Eu_{2}O_{3}^{x}$
H f	500°C	HfO_2	Ρd	200°C	Pď	Gd	500°C	Gd_2O_3
Fe	500°C	Fe ₂ O ₃	Ρd	500°C	PdO	Тb	500°C	$Tb\bar{o}O\bar{o}$
Co	300°C	Co	Ιn	500°C	In_2O_3	Dу	500°C	Dy_2O_3
Co	500°C	CoO	Ιn	flash lamp	l n ¯ ¯	Нο	500°C	$H \circ _{2} O_{3}$
Νi	500°C	NiO	Sn	500°C	SnO ₂	Εr	500°C	$Er_{2}O_{3}^{T}$
Cu	500°C	CuO	La	500°C	La ₂ Ō ₃	Lu	500°C	Lu ₂ O ₃

Two-tone Patterning

REF: *Nanomaterials* **2012**, *2*, 312–328.

Photo-patterning + Plating System

- ➤ Same apparatus as used for patterning photo resist / photolithography
- ➤ Same light source & amount of exposure
- ➤ Same aqueous developer
- ➤ No etching

➤ No resist stripping

>Fully additive circuit formation

➤ All solution processing

➤ High resolution (so far 400 nm features)

Palladium Patterning

L-line/trench & bump/hole: L/S = $2\sim100~\mu m$ on glass

Pd Mesh L/S = $1.5/10 \, \mu m$

NVOC-Pd → Pd⁰ (Positive tone)

★ glass, silicon, PC, PEN ★

Direct Pattern Ni Plating

Selective nickel plating on TETC73-246A pattern

On display @ Semicon Japan 2012 Dec. 5-7th at Makuhari Messe by Kiyokawa Plating Industry Co. Ltd.

Direct Pattern ENIG Plating

Selective
electroless nickel /
immersion gold
plating on
TETC73-246A pattern

On display @ Semicon Japan 2012 Dec. 5-7th at Makuhari Messe by Kiyokawa Plating Industry Co. Ltd.

Cu Catalyst Patterning

Cu Catalyst Patterning

Cu Plating on Cu Catalyst

Selective Electroless Copper (PB-506) on Photopatterned Copper Catalyst (BTC73-250) on 8" Wafer

Line / Bump

Trench / Hole

Cu Catalyst Patterning

Selective Electroless Copper on Photopatterned Copper Catalyst

5 Lines: $L/S = 1 \mu \text{ m}/1 \mu \text{ m}$

Cu Catalyst Nano-Patterning

Photopatterned Copper Catalyst (TETC73-246A)

5 Lines: L/S = 400 nm/400 nm

400 nm Line Patterns

Patterned by Tokyo Ohka Kogyo

Bio-compatible All-Au Plating

Cyanide Free Gold Plating: RSG

Weakly acidic, non-toxic gold plating bath for medical & bio device fabrication

Characteristics of RSG

- Can be designed to function without use of toxic, hazardous, or environmentally harmful substances. No use of cyanide.
- Complexants and additives can be selected from amino acids, vitamins, minerals, antibiotics and other pharmaceutical intermediates.
- > Reduced by vitamin C.
- Compatible with direct pattern plating methods described here, UV surface modification of resin method described by Koto Electric, with electrolytic reduction, or as immersion gold.
- ➤ Can be used over a wide pH range (4-14).
- Still in developmental stage, so deposit characteristics are not yet fully understood.
- >Autocatalytic reaction initiation by gold or palladium catalyst.
- Simple gold(I) complex synthesis via sodium tetrachloroaurate(III). Easy isolation in a pure form free of chloride if necessary.
- More stable than gold sulfite baths, & no relation to "lemon gold" baths.

"THE GOLD PLATING SOLUTION YOU CAN DRINK"

Chemical Plating

Plating bath composition/parameters

➤Gold(I) complex

➤ Electrolyte: Potassium Citrate

➤ Reducing agent: Vitamin C

➤ Additives: Accelerator (dietary supplement/amino acid), brightener (antibiotic),

leveler (food additive), surfactant (food/cleanser additive)

>pH: 4-14

➤ Temperature: 70-85°C

> Deposition rate: Depends on additives and requirements

Autocatalytic initiation catalyst (Pd or Au)

Summary

∠ High definition photo-pattern catalyst

 \Rightarrow

Direct pattern plating

∠ Submicron metal structures (resolution limited by optical equipment) With diffraction patterns; nano level

⇒ Stacked multi-layer structures

∠ Electroless palladium-free copper & bio-compatible all-gold

✓ Plating on smooth surface / smooth interfaces

✓ Fine metal mesh as a transparent conductor (ITO alternative)